首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   50篇
  2023年   3篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   8篇
  2008年   14篇
  2007年   4篇
  2006年   6篇
  2005年   11篇
  2004年   11篇
  2003年   4篇
  2002年   13篇
  2001年   14篇
  2000年   10篇
  1999年   12篇
  1998年   9篇
  1997年   2篇
  1996年   8篇
  1995年   9篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有279条查询结果,搜索用时 31 毫秒
11.
We isolated a complementary DNA sequence for the enzyme sucrose phosphate synthase (SPS) from maize utilizing a limited amino acid sequence. The 3509-bp cDNA encodes a 1068-amino acid polypeptide. The identity of the cDNA was confirmed by the ability of the cloned sequence to direct sucrose phosphate synthesis in Escherichia coli. Because no plant-specific factors were necessary for enzymatic activity, we can conclude that SPS enzyme activity is conferred by a single gene product. Sequence comparisons showed that SPS is distantly related to the enzyme sucrose synthase. When expressed from a ribulose bisphosphate carboxylase small subunit promoter in transgenic tomatoes, total SPS activity was boosted up to sixfold in leaves and appeared to be physiologically uncoupled from the tomato regulation mechanism. The elevated SPS activity caused a reduction of starch and increase of sucrose in the tomato leaves. This result clearly demonstrates that SPS is involved in the regulation of carbon partitioning in the leaves.  相似文献   
12.
R. A. Voelker  J. Graves  W. Gibson    M. Eisenberg 《Genetics》1990,126(4):1071-1082
The locations of 16 mobile element insertions causing mutations at the Drosophila suppressor of sable [su(s)] locus were determined by restriction mapping and DNA sequencing of the junction sites. The transposons causing the mutations are: P element (5 alleles), gypsy (3 alleles), 17.6, HMS Beagle, springer, Delta 88, prygun, Stalker, and a new mobile element which was named roamer (2 alleles). Four P element insertions occur in 5' nontranslated leader sequences, while the fifth P element and all 11 non-P elements inserted into the 2053 nucleotide, 5'-most intron that is spliced from the 5' nontranslated leader approximately 100 nucleotides upstream of the translation start. Fifteen of the 16 mobile elements inserted within a approximately 1900 nucleotide region that contains seven 100-200-nucleotide long DNase I-hypersensitive subregions that alternate with DNase I-resistant intervals of similar lengths. The locations of these 15 insertion sites correlate well with the roughly estimated locations of five of the DNase I-hypersensitive subregions. These findings suggest that the features of chromatin structure that accompany gene activation may also make the DNA susceptible to insertion of mobile elements.  相似文献   
13.
Genic variation in natural populations of Drosophila simulans was surveyed using allozymic and two-dimensional electrophoretic techniques. Consistent with some previous reports, allozymic heterozygosity appeared lower than in the sibling species D. melanogaster (0.07 vs. 0.16). No variation was detected by two-dimensional electrophoresis of 19 lines scored for 70 abundant proteins. This is consistent with reported reductions in estimates of genic heterozygosity by two-dimensional electrophoresis in D. melanogaster, Mus musculus, and man. Although the amount of intraspecific variation detected in abundant proteins was lower than that detected for allozymes in D. simulans and D. melanogaster, the genetic distances between the sibling species calculated from the two data sets are not significantly different (0.35 and 0.20). The allozyme and two-dimensional electrophoresis data confirmed the impression from other measures of genetic variation (mitochondrial DNA restriction maps and inversion polymorphisms) that D. simulans is substantially less variable than D. melanogaster.  相似文献   
14.
R. A. Voelker  C. H. Langley 《Genetica》1978,49(2-3):233-236
Dipeptidase A (Dip-A), a new peptidase locus in Drosophila melanogaster, is located on the second chromosome at map position 55.2 and in the 41A-B; 42A2-3 interval in the salivary gland chromosomes. Three alleles are reported. In the Carpenter, North Carolina population the allele frequencies are: Dip-A 6 (fastest)=0.064; Dip-A 4 (intermediate)=0.920; and Dip-A 2 (slowest)=0.015.  相似文献   
15.
Montane areas host high levels of diversity and endemism, and these features are tied to habitat stratification along an elevational gradient. As such, montane areas are often thought of as model systems in which sympatric speciation can occur. To test this idea, we selected Phoenicurus redstarts, an avian genus with an extensive distribution across Eurasia, as well as Northwest Africa; nine of the 14 species in the genus have distributions which include the Himalayas. We used sequences of the mtDNA ND2 and cytochrome-b genes and intron 9 of the Z chromosome specific ACO1 gene to reconstruct a phylogeny of the genus. The resulting trees were used to reconstruct a biogeographic history of Phoenicurus, and to date diversification events. We also analysed the relationship between node age and sympatry to determine the geographic mode of speciation in the genus. Our data suggest a very late Miocene, Himalayan origin for Phoenicurus. Diversification and colonization of other parts of Eurasia, as well as Northwest Africa, continued through the Pleistocene, with a rapid pulse of speciation in the late Pliocene. Allopatric speciation was the dominant mode of speciation in Phoenicurus, despite extensive distributional overlaps in the Himalayas where ecological conditions are amenable to speciation in sympatry. Our results, along with several other studies, suggest an emerging pattern where the Himalayas served as a source area for montane specialist avian lineages that subsequently colonized other Palaearctic regions.  相似文献   
16.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
17.
The Riverine Barriers Hypothesis (RBH) posits that tropical rivers can be effective barriers to gene flow, based on observations that range boundaries often coincide with river barriers. Over the last 160 years, the RBH has received attention from various perspectives, with a particular focus on vertebrates in the Amazon Basin. To our knowledge, no molecular assessment of the RBH has been conducted on birds in the Afrotropics, despite its rich avifauna and many Afrotropical bird species being widely distributed across numerous watersheds and basins. Here, we provide the first genetic evidence that an Afrotropical river has served as a barrier for birds and for their lice, based on four understory bird species collected from sites north and south of the Congo River. Our results indicate near‐contemporaneous, Pleistocene lineage diversification across the Congo River in these species. Our results further indicate differing levels of genetic variation in bird lice; the extent of this variation appears linked to the life‐history of both the host and the louse. Extensive cryptic diversity likely is being harbored in Afrotropical forests, in both understory birds and their lice. Therefore, these forests may not be “museums” of old lineages. Rather, substantial evolutionary diversification may have occurred in Afrotropical forests throughout the Pleistocene, supporting the Pleistocene Forest Refuge Hypothesis. Strong genetic variation in birds and their lice within a small part of the Congo Basin forest indicates that we may have grossly underestimated diversity in the Afrotropics, making these forests home of substantial biodiversity in need of conservation.  相似文献   
18.
In yeast, nascent phosphatidylserine (PtdSer) can be transported to the mitochondria and Golgi/vacuole for decarboxylation to synthesize phosphatidylethanolamine (PtdEtn). In strains with a psd1Delta allele for the mitochondrial PtdSer decarboxylase, the conversion of nascent PtdSer to PtdEtn can serve as an indicator of lipid transport to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole. We have followed the metabolism of [(3)H]serine into PtdSer and PtdEtn to study lipid transport in permeabilized psd1Delta yeast. The permeabilized cells synthesize (3)H-PtdSer and, after a 20-min lag, decarboxylate it to form [(3)H]PtdEtn. Formation of [(3)H]PtdEtn is linear between 20 and 100 min of incubation and does not require ongoing PtdSer synthesis. PtdSer transport can be resolved into a two-component system using washed, permeabilized psd1Delta cells as donors and membranes isolated by ultracentrifugation as acceptors. With this system, the transport-dependent decarboxylation of nascent PtdSer is dependent upon the concentration of acceptor membranes, requires Mn(2+) but not nucleotides, and is inhibited by EDTA. High speed membranes isolated from a previously identified PtdSer transport mutant, pstB2, contain normal Psd2p activity but fail to reconstitute PtdSer transport and decarboxylation. Reconstitution with permutations of wild type and pstB2Delta donors and acceptors identifies the site of the mutant defect as the acceptor side of the transport reaction.  相似文献   
19.
Brefeldin A (BFA) causes disassembly of the Golgi apparatus and blocks protein transport to this organelle from the endoplasmic reticulum. However, there still remains considerable ambiguity regarding the involvement of the Golgi apparatus in glycerolipid transport pathways. We examined the effects of BFA upon the intracellular translocation of phosphatidylcholine in alveolar type II cells, that synthesize, transport, store and secrete large amounts of phospholipid for regulated exocytosis. BFA at concentrations as high as 10 microg/ml failed to alter the assembly of phosphatidylcholine into lamellar bodies, the specialized storage organelles for pulmonary surfactant. The same concentration of BFA was also ineffective at altering the secretion of newly synthesized phosphatidylcholine from alveolar type II cells. In contrast, concentrations of the drug of 2.5 microg/ml completely arrested newly synthesized lysozyme secretion from the same cells, indicating that BFA readily blocked protein transport processes in alveolar type II cells. The disassembly of the Golgi apparatus in alveolar type II cells following BFA treatment was also demonstrated by showing the redistribution of the resident Golgi protein MG-160 to the endoplasmic reticulum. These results indicate that intracellular transport of phosphatidylcholine along the secretory pathway in alveolar type II cells proceeds via a BFA insensitive route and does not require a functional Golgi apparatus.  相似文献   
20.
A genetic screen for ethanolamine auxotrophs has identified a novel mutant allele of the morphogenesis checkpoint dependent (MCD)-4 gene, designated mcd4-P301L. In the presence of a null allele for the phosphatidylserine (PtdSer) decarboxylase 1 gene (psd1 Delta), the mcd4-P301L mutation confers temperature sensitivity for growth on minimal medium. This growth defect is reversed by either ethanolamine or choline supplementation. Incubation of mutant cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrated a 60% decrease in phosphatidylethanolamine (PtdEtn) formation compared to parental cells. Chemical analysis of phospholipid content after culture under non-permissive conditions also demonstrated a 60% decrease in the PtdEtn pool compared to the parental strain. Although the morphogenesis checkpoint dependent (MCD)-4 gene and its homologues have been shown to play a role in glycosylphosphatidylinositol (GPI) anchor synthesis, the mcd4-P301L strain displayed normal incorporation of [(3)H]inositol into both proteins and lipids. Thus, a defect in GPI anchor synthesis does not explain either the ethanolamine auxotrophy or biochemical phenotype of this mutant. We also examined the growth characteristics and PtdSer metabolism of a previously described mcd4-174 mutant strain, with defects in GPI anchor synthesis, protein modification and cell wall maintenance. The mcd4-174, psd1 Delta strain is a temperature sensitive ethanolamine auxotroph that requires osmotic support for growth, and displays normal PtdEtn formation compared to parental cells. These results reveal important genetic interactions between PSD1 and MCD4 genes, and provide evidence that Mcd4p can modulate aminoglycerophospholipid metabolism, in a way independent of its role in GPI anchor synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号